ELECTROLYTIC CELLS

ELECTROLYSIS OF AQUEOUS SOLUTIONS

STEPS

- 1. Separate all of the "ingredients" within the solution into their respective ions
- 2. Create 2 headings: "Cathode / Reduction / -'ve" and "Anode / Oxidation / +'ve"
- 3. Group all of the positive ions under "Cathode..." and all of the negative ions under "Anode..."
- 4. If there are oxy-ion(s) (i.e. NO_3^- , ClO_4^- , etc.) present, calculate the oxidation charge for the non-oxygen element. If it possesses its highest oxidative charge, it cannot be further oxidized, and thus it becomes "useless" for the rest of the equation.
 - It is imperative to identify this reality, as it can mislead you for the remaining portion of the question
- 5. Identify reduction charges for each of the ions
- 6. "Cathode..." → Pick the ion with the highest reduction potential (i.e. -0.14 over -0.52, etc.)
- 7. "Anode..." \rightarrow Pick the ion with the lowest reduction potential (i.e. +1.07 over +1.23 etc.)
- 8. Solve

EXAMPLE

In a solution with SnBr₂ and Al(NO₃)₃

Cathode/Reduction/-'ve
$$E^o$$
 Anode/Oxidation/+'ve E^o $Sn^{2+} \rightarrow -0.14$ $Br \rightarrow +1.07$ $NO_3^- \rightarrow X \longrightarrow H^+ \rightarrow -0.83$ $O^{2-} \rightarrow +1.23$

Cathode \rightarrow Sn²⁺ because it has the highest reduction potential

Anode → Br - because it has the highest oxidation potential (lowest reduction potential)

2 Equations to be used:

 $N0^{-}_{3} \rightarrow$

x - 6 = -1x = +5

Nitrogen's max oxidation

number is +5,

it cannot be

Since.

further

oxidized.