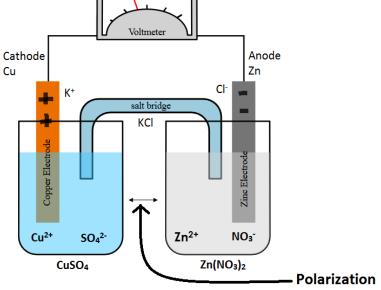

Galvanic Cells

DEFINITIONS

Term	Definition	
Electrochemistry	Reactions that produce (or is caused by) a flow of e	
Electric Cell	A device that continuously converts chemical energy into electrical energy	
Electrode	A solid electrical conductor	
Electrolyte	An aqueous electrical conductor	
Voltage/Volt	Potential for e ⁻ to go through a circuit	
	1 V \rightarrow 1 J/Coulomb	
	Volt $ ightarrow$ The SI unit for electrical potential difference	
Current/Ampere/Coulomb	Current \rightarrow Electrical current is a measure of the amount of electrical charge transferred per unit time. It represents the flow of electrons through a conductive material.	
	1 A \rightarrow 1 Coulomb/second	
	Ampere \rightarrow The SI unit for electrical current	
	Coulomb \rightarrow The SI unit for electrical charge	
Half-Cell	An electrode and an electrolyte forming half a complete cell	
Galvanic Cell	An arrangement of 2 half-cells that can produce electricity spontaneously	
Cathode/Anode	Cathode (+) \rightarrow electrode where reduction occurs	
	Anode (-) $ ightarrow$ electrode where oxidation occurs	
Standard Reduction Potential	$\Delta E^o \rightarrow$ represents the ability of a standard half-cell to attract electrons in a reduction half-reaction	
Salt Bridge	A "U"-shaped tube that contains an inert (unreactive) aqueous electrolyte	
Volta's Cell	Made up of Copper (Cu) metal, paper soaked in salt solution, ar Zinc (Zn) metal	

EXPERIMENT


Measured in Volts (V):

	Zn	Cu	AI	Ni	С	Sn
Zn						
Cu	0.6					
Al	0	0.1				
Ni	0	0.09	0.08			
С	0	0.05	0.10	0.02		
Sn	0.1	0.3	0	0.24	0.38	

The components of all electric cells are:

- 2 electrodes
- 1 electrolyte

	Observation	Interpretation
Cu Electrode	Buildup of Cu	Reduced as $Cu^{2+} + 2e^- \rightarrow Cu$
Zn Electrode	White residue	Due to Sulfate
	Getting smaller	Oxidized as $Zn \rightarrow Zn^{2+} + 2e^{-}$
U-tube	Blue (Cu ²⁺ ions)	Cu ²⁺ ions in the tube
Zn Solution	Limey Green Solution	Presence of SO_4^{2-} ions
Cu Solution	Blue solution	Cu ²⁺ ions present within the solution
Voltmeter Reading	0.45 V	Spontaneous Reaction →Redox reaction
Voltm	neter	• $Cu^{2+} + 2e^{-} \rightarrow Cu$

$E^{o} = +0.34 V$

•

Anode

- $Zn \rightarrow Zn^{2+} + 2e^{-}$
- $E^o = -0.76 V$

Final Equation

 $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$ $\Delta E^o = +0.34V - (-0.76V)$ $\Delta E^o = +1.10V$

There are 3 types of Galvanic Cells:

- 1. 2 Metal Electrodes
- 2. Metal + Inert
- 3. 2 Inert Electrodes

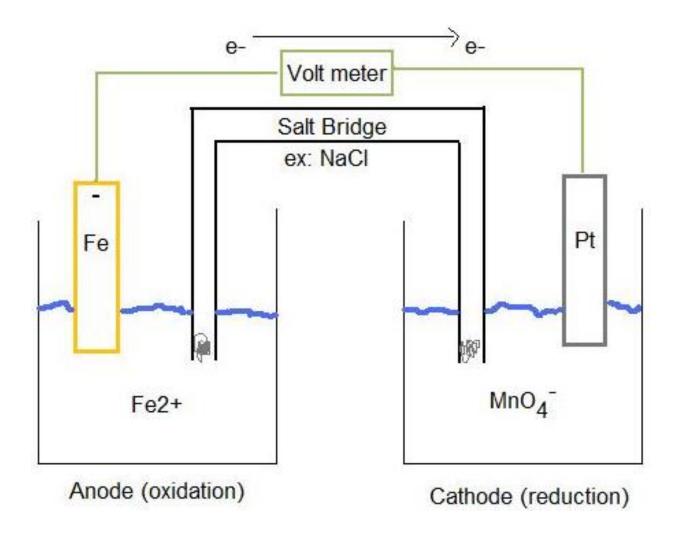
TWO METAL ELECTRODES

Using the Standard Reduction Potential Table to predict the anodes and cathodes for the following:

Combination	Anode (Lowest Voltage)	Cathode (Highest Voltage)	Half-Reactions
Ni + Sn	Ni → -0.25V	Sn → -0.16V	$Ni \rightarrow Ni^{2+} + 2 e^{-} E^{o} = +0.25V$ $Sn^{2+} + 2 e^{-} \rightarrow Sn E^{o} = -0.16V$ Final Equation: $Ni + Sn^{2+} \rightarrow Ni^{2+} + Sn \Delta E^{o} = 0.09V$
Al + Zn	AI → -1.66V	Zn → -0.76V	2 · $(Al \rightarrow Al^{3+} + 3 e^{-}) E^{o} = +1.66V$ 3 · $(Zn^{2+} + 2 e^{-} \rightarrow Zn) E^{o} = -0.76V$ Final Equation: 2 $Al + 3 Zn^{2+} \rightarrow 2 Al^{3+} + 3 Zn \Delta E^{o} = 0.90V$
Sn + Al	Al → -1.66V	Sn → -0.16	$2 \cdot (Al \to Al^{3+} + 3 e^{-}) E^{o} = +1.66V$ $3 \cdot (Sn^{2+} + 2 e^{-} \to Sn) E^{o} = -0.16V$ Final Equation: $2 Al + 3 Sn^{2+} \to 2 Al^{3+} + 3 Sn \Delta E^{o} = 1.50V$
Cu + Al	AI → -1.66V	Cu → +0.34V	2 · $(Al \rightarrow Al^{3+} + 3 e^{-}) E^{o} = +1.66V$ 3 · $(Cu^{2+} + 2 e^{-} \rightarrow Cu) E^{o} = +0.34V$ Final Equation: 2 $Al + 3 Cu^{2+} \rightarrow 2 Al^{3+} + 3 Cu \Delta E^{o} = 2.00V$
Ni + Zn	Zn → -0.76V	Ni → -0.25V	$Zn^{2+} + 2 e^- \rightarrow Zn \ E^o = +0.76V$ $Ni \rightarrow Ni^{2+} + 2 e^- \ E^o = -0.25V$ Final Equation: $Ni + Zn^{2+} \rightarrow Ni^{2+} + Zn \ \Delta E^o = 0.51V$

METAL + INERT ELECTRODES

Terms	Definition (What the term means for this type of cell)
Inert	Non-reactive (Pt, Carbon)
Anode	Metal Electrode


Cathode	Reduction of ions
---------	-------------------

Ex. Carbon + Metal Electrode What reaction occurred in the solution (NaNO₃)? $NO_3^- + 3H^+ + 2e^- \rightarrow HNO_2 + H_2O \ E^o = +0.94V$

An inert electrode is a metal submerged in an aqueous solution of ion compounds that transfers electrons rather than exchanging ions with the aqueous solution. It does not participate or interfere in the chemical reaction but serves as a source of electrons. Platinum is usually the metal used as an inert electrode. An active electrode is an electrode that can be oxidized or reduced in half reaction.

Anode: $Fe^{2+}_{(aq)} \rightarrow Fe^{3+}_{(s)} + e^{-}$

Cathode: $MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 5e^{-} \rightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(I)}$

TWO INERT ELECTRODES

Inert \rightarrow non-reactive

Galvanic Cells are characterized by their ability to induce spontaneous reactions. However, the primary difference between the various types of Galvanic Cells is simply the type of electrode used. Specifically, the primary element found within the electrode.

Steps

- 1. Find 2 equations in the Standard Reduction Potential Table that contain all of the ions
- 2. Determine the anode and cathode
- 3. Reverse anode reaction and sign on the voltage
- 4. Balance the electrons
- 5. Add the equations

Example 1

Consider the following combination of ions:

 BrO_3^- H⁺ Br⁻ H₂O S₄O₆²⁻ S₂O₃²⁻

1. "Find 2 equations in the Standard Reduction Potential Table that contain all of the ions"

In this example, the two equations that contain all of the ions are:

- $BrO_3^- + 6H^+ + 6e^- \rightarrow Br^- + 3H_2O$ $E^o = +1.44$
- $S_4 O_6^{2-} + 2e^- \rightarrow 2 S_2 O_3^{2-}$ $E^o = +0.169$
- 2. "Determine the anode and cathode"

Remember that the anode of a galvanic cell is the ion of the equation with the lowest voltage. Anode of a galvanic cell is where reduction occurs, thus it has to be lower on the Standard **Reduction** Potential table.

- Anode: $S_4 O_6^{2-}$ $E^o = +0.169$
- Cathode: $BrO_3^ E^o = +1.44$
- 3. "Reverse anode reaction and sign on the voltage"

To reverse a reaction, the products of original anode equation become the reactants. Due to this, the sign on the voltage is reversed as well.

Original Equation:

 $S_4 0_6^{2-} + 2e^- \rightarrow 2 S_2 0_3^{2-} \quad E^o = +0.169$

Equation upon reversal:

 $2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + 2e^ E^o = -0.169$

4. "Balance electrons"

Let's look at our 2 equations again.

 $BrO_3^- + 6H^+ + 6e^- \rightarrow Br^- + 3H_2O \quad E^o = +1.44$ 2 S₂O₃²⁻ \rightarrow S₄O₆²⁻ + 2e⁻ $E^o = -0.169$ There are 6e⁻ reacting, but only 2e⁻ being produced. Therefore, we must multiply the anode reaction by a factor of 3 (*Numeric Factor* = $\frac{Number of electrons reacting}{Number of electrons produced} = \frac{6}{2} = 3$) in order to balance the electrons. Remember **NOT** to multiply the voltage.

$$3 \cdot [2 S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + 2e^{-}] \qquad E^o = -0.169$$
$$= 6 S_2 O_3^{2-} \rightarrow 3 S_4 O_6^{2-} + 6e^{-} \qquad E^o = -0.169$$

After balancing:

 $BrO_{3}^{-} + 6H^{+} + 6e^{-} \rightarrow Br^{-} + 3H_{2}O \qquad E^{o} = +1.44$ $6 S_{2}O_{3}^{2^{-}} \rightarrow 3 S_{4}O_{6}^{2^{-}} + 6e^{-} \qquad E^{o} = -0.169$

5. "Add the equations"

 $(BrO_3^- + 6H^+ + 6e^- \rightarrow Br^- + 3H_2O \quad E^o = +1.44) + (6 S_2O_3^{2-} \rightarrow 3 S_4O_6^{2-} + 6e^- \quad E^o = -0.169)$ $BrO_3^- + 6H^+ + 6 S_2O_3^{2-} + 6e^- \rightarrow Br^- + 3H_2O + 3 S_4O_6^{2-} + 6e^- \quad \Delta E^o = +1.44 - 0.169 = +1.271$

Final Equation:

 $BrO_{3}^{-} + 6H^{+} + 6S_{2}O_{3}^{2-} \rightarrow Br^{-} + 3H_{2}O + 3S_{4}O_{6}^{2-} \qquad \Delta E^{o} = +1.271$

Example 2